Phosphorylation of Sp1 in response to DNA damage by ataxia telangiectasia-mutated kinase.
نویسندگان
چکیده
Sp1, a transcription factor that regulates expression of a wide array of essential genes, contains two SQ/TQ cluster domains, which are characteristic of ATM kinase substrates. ATM substrates are transducers and effectors of the DNA damage response, which involves sensing damage, checkpoint activation, DNA repair, and/or apoptosis. A role for Sp1 in the DNA damage response is supported by our findings: Activation of ATM induces Sp1 phosphorylation with kinetics similar to H2AX; inhibition of ATM activity blocks Sp1 phosphorylation; depletion of Sp1 sensitizes cells to DNA damage and increases the frequency of double strand breaks. We have identified serine 101 as a critical site phosphorylated by ATM; Sp1 with serine 101 mutated to alanine (S101A) is not significantly phosphorylated in response to damage and cannot restore increased sensitivity to DNA damage of cells depleted of Sp1. Together, these data show that Sp1 is a novel ATM substrate that plays a role in the cellular response to DNA damage.
منابع مشابه
Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner.
Chk2 is a serine/threonine kinase that signals to cell cycle arrest, DNA repair, and apoptotic pathways following DNA damage. It is activated by phosphorylation in response to ionizing radiation, UV light, stalled replication forks, and other types of DNA damage. Hypoxia is a common feature of solid tumors and has been shown to affect the regulation of many genes, including several DNA repair f...
متن کاملSp1 phosphorylation by ATM downregulates BER and promotes cell elimination in response to persistent DNA damage
ATM (ataxia-telangiectasia mutated) is a central molecule for DNA quality control. Its activation by DNA damage promotes cell-cycle delay, which facilitates DNA repair prior to replication. On the other hand, persistent DNA damage has been implicated in ATM-dependent cell death via apoptosis; however, the mechanisms underlying this process remain elusive. Here we find that, in response to persi...
متن کاملAtaxia telangiectasia-related protein is involved in the phosphorylation of BRCA1 following deoxyribonucleic acid damage.
The breast/ovarian cancer susceptibility gene BRCA1 exerts its tumor suppressor function, at least in part, by participating in DNA repair and/or DNA damage-responsive pathways. BRCA1 protein is hyperphosphorylated following various DNA-damaging events. Here, we report that the ataxia telangiectasia mutated protein-related protein kinase (ATR) is involved in the phosphorylation of BRCA1 followi...
متن کاملDNA damage-induced phosphorylation of TRF2 is required for the fast pathway of DNA double-strand break repair.
Protein kinases of the phosphatidylinositol 3-kinase-like kinase family, originally known to act in maintaining genomic integrity via DNA repair pathways, have been shown to also function in telomere maintenance. Here we focus on the functional role of DNA damage-induced phosphorylation of the essential mammalian telomeric DNA binding protein TRF2, which coordinates the assembly of the proteina...
متن کاملInhibition of Transforming Growth Factor-B1 Signaling Attenuates Ataxia Telangiectasia Mutated Activity in Response to Genotoxic Stress
Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor B (TGFB)-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGFB inhibition impedes the canonical cellular DNA damage s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 5 12 شماره
صفحات -
تاریخ انتشار 2007